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Abstract: In industrial processes, causality analysis plays an important role in fault detection
and topology building. Aiming to attenuate the influence of common correlation and noise, a
feature based causality analysis method is proposed. By using the orthogonality and de-noising
in feature analysis, it can capture more efficient causal factors. Moreover, better causal factors
can make better predictions. Soft sensors based on least-squares regression and two neural
networks are tested to compare the performance when using different causal factors and not
using causal factors. The results show that the causal feature based soft sensors obtain the
best performance and causal factors are crucial to prediction performance. Hence, it has great
application potential owing to its strong interpretability and good accuracy.
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1. INTRODUCTION

For large-scale industrial processes, the system behavior is
influenced by complex inter-relationship of different vari-
ables. To identify such inter-relationship, causality anal-
ysis, which aims to find a causal network of measured
variables, plays an important role in analyzing influence
mechanisms and understanding dynamic behavior. More-
over, with an accurate topology capturing causality, it is
easy to perform fault detection when determining root
cause and fault propagation.

Nowadays, several data-based causality analysis methods
have been proposed like Granger causality analysis (GCA)
and transfer entropy (TE). Considering the bivariate situ-
ation, if the augmentation can get better prediction ac-
curacy when the regression of a variable on its lagged
values is compared to the augmented regression on lagged
values of the other variable, then it is said this variable is
Granger-caused by the other variable (Yang et al., 2014).
Since it is easy to understand and implement (Duan et al.,
2014), GCA becomes a popular method in causality anal-
ysis. Transfer entropy (Schreiber, 2000) is another popular
approach which can be applied to nonlinear situation. It
has been shown GCA and TE are equivalent in case of
Guassian distributed variables (Barnett et al., 2009). Sim-
ilarly, the basic idea of transfer entropy is to which extent
the uncertainty is reduced when the past observations of
the other variable is included compared to the situation
where information of one variable is obtained using the
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past values of itself alone. The complexity of calculating
probability density function and too many paraments limit
the application of TE.

In addition, the influence of noise makes all data-based
causality analysis method difficult to obtain an accurate
result. Nalatore et al. (2007) and Overbey & Todd (2009)
pointed out the influence of noise in GCA and TE re-
spectively. To attenuate the noise influence, feature based
causality analysis is proposed since extracted features con-
tain less information about noise and reflect the essential
rule of process itself.

Principal component analysis (PCA, Valle et al., 1999)
and slow feature analysis (SFA, Shang et al., 2015) stand
out among different feature learning methods in process
monitoring. PCA aims to extract latent variables carrying
most variance information while SFA aims to extract
latent variables with slow changes. Both methods are
seen as good approaches to extracting the essential rule
of processes and reducing the influence of noise. Hence,
substituting features for the original variables to perform
causality analysis is a better choice.

In industrial processes, soft sensors aim to predict those
hard-to-measure primary variables online with those easy-
to-measure variables which have high correlations with pri-
mary variables (Wang et al.,2019). Since correlation does
not mean causality, selected variables using correlation
coefficients will have redundant information about primary
variables. Meanwhile, the original variables contain noise,
which reduces the prediction accuracy. As a result, causal
feature based soft sensor is proposed in this paper.
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It should be noted that although some studies have been
made to combine causality analysis and feature learning
methods (Yuan, 2013; Zhou et al., 2009), they only value
the convenience of computation and the preservation of
information in extracted features since the dimensions of
the original variables are rather high. This work, however,
pays more attention to whether combinations of variables
could exert more causal influence on the primary variables
than the original variables and applies the feature based
causality analysis to the soft sensor modeling.

The rest of the paper is arranged as follows. In section
2, two feature learning methods are reviewed. In section
3, Granger causality analysis is introduced. In section 4,
feature based causality analysis and causal feature based
soft sensor is proposed. Performance of proposed method
using Tennessee Eastman benchmark process is evaluated
in section 5. Finally, some conclusions are made in section
6.

2. FEATURE LEARNING

2.1 Principal component analysis

Principal component analysis (PCA) is a classical feature-
extracting method aiming to find those latent variables
who carry the most variance information from the original
data. For a given standardized data matrix where n
denotes the number of observations and m denotes the
number of variables, PCA tries to decompose it as the
following equation:

X = X̂ + E = TP T + E (1)

where T = [t1, t2, ..., tA] = XP ∈ Rn×A is the score ma-
trix, P ∈ Rm×A is the loading matrix, ti ∈ Rn is the latent
variable known as the principal component, E ∈ Rn×m is
the residual matrix, A is the number of principle compo-
nents and it could be determined according to the methods
proposed by Valle et al. (1999).

It should be noted that all latent variables are uncorrelated
in PCA, implying that there is no redundant information
among them. It is very important in this work as we
could assume that extracted uncorrelated features would
show fewer causal relationships than the original variables
with high correlation in industrial processes. Meanwhile,
the introduction of residual matrix is to eliminate noise
information from latent variables since the variance of
noise is quite small so that features learned in PCA are
of practical meaning.

However, dynamics are nonnegligible in industrial process
while PCA is a static model. Ku et al. (1995) used ‘time-
lag shift’ method to include dynamic information in PCA
model, which is known as Dynamic PCA (DPCA). History
observations with time lag d are contained so that the
input matrix is changed as X ∈ Rn×m(d+1).

2.2 Slow feature analysis

Slow feature analysis (SFA) focuses on the mining of
features which change slow. Since industrial processes have
significant inertial characteristics, dynamic characteristics
are often slow and those who change fast are assumed as
noise.

For a stochastic signal X (t), the slowness could be defined
as follows:

∆ (X (t)) =
〈
Ẋ2 (t)

〉
t

(2)

where 〈X (t)〉t = 1
N

N∑
i=1

X (ti) means the time averaging

value of a certain time series with N observations and
Ẋ (t) = X (t)−X (t− 1) is the first-order derivative of X
with respect to time.

Considering a given input time series signal x (t) =

[x1 (t) , x2 (t) , ..., xm (t)]
T

with m variables, the purpose
of SFA is to find a set of slow features s (t) =

[s1 (t) , s2 (t) , ..., sm (t)]
T

so that the slowness of extracted
feature is minimal. The objective of this optimal problem
is:

min
gi(·)

〈
ṡ2i
〉
t
, i = 1, 2, ...,m

s.t.〈si〉t = 0;
〈
s2i
〉
t

= 1; 〈sisj〉t = 0,∀i 6= j
(3)

where si (t) = gi (x (t)) and could be written as si (t) =
wT

i x (t) for the linear situation.

Shang et al. (2016) gave a detailed introduction of the
solutions of SFA problem and geometric interpretations.
Two steps of singular value decomposition are performed
accordingly to solve the SFA problem in this work.

Obviously, a good feature-learning method should avoid
the influence of noise. SFA excludes those slow features
that are faster than all input since they behave like noise
as Shang et al. (2015) suggests. For robustness, a q-upper
quantile value of the slowness of inputs was introduced.
Denoting Me as the number of features that are ought to
be removed, Me is defined as follows:

Me = card{si|∆si > maxq
j{∆xj}} (4)

As mentioned in section 2.1, since latent variables in SFA
are uncorrelated, it is assumed SFA can also get better
causal factors. To introduce dynamics in SFA, observations
with time lag d are also included in inputs like DPCA.
Therefore, input vector could be redefined in the following

format: x (t) ,
[
xT (t) ,xT (t− 1) , ...,xT (t− d)

]T
.

3. GRANGER CAUSALITY ANALYSIS

The idea of Granger causality comes from Wiener’s notion
of causality, ‘X causes Y if the predictability of Y could
be improved by introducing the information of X’. Lacking
the machinery of prediction, Granger (1969) used a bivari-
ate autoregressive model to formalize the idea, that is, the
introduction of the history information of X reduces the
prediction error of Y in a bivariate autoregressive model
comparing with the model only using the past information
of Y . Supposing that two time series X (t) and Y (t) could
be represented as the restricted model using autoregressive
process:

X (t) =

p∑
j=1

a1,jX (t− j) + ε1x (t)

Y (t) =

p∑
j=1

b1,jY (t− j) + ε1y (t)

var (ε1x (t)) = Γ1x, var (ε1y (t)) = Γ1y

(5)
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Jointly, they could be described by the full model as:

X (t) =

p∑
j=1

a21,jX (t− j) +

p∑
j=1

a22,jY (t− j) + ε2x (t)

X (t) =

p∑
j=1

b21,jX (t− j) +

p∑
j=1

b22,jY (t− j) + ε2y (t)

var (ε2x (t)) = Γ2x, var (ε2y (t)) = Γ2y

(6)

Comparing (5) with (6), Γ1x measures prediction accuracy
of X (t) using its own information while Γ2x measures
prediction accuracy of X (t) using information of both X
and Y . According to Granger causality, if Γ2x is less than
Γ1x, then it is said Y causes X in Granger causality.

In other words, the causal influence can be measured as:

FX→Y = ln
Γ1y

Γ2y
(7)

However, statistical significance needs to be accessed be-
fore a causal link is established. F-test is applied in
Granger causality:

(RSS1 −RSS2) / (p2 − p1)

RSS2/ (m− p2)
∼ Fp2−p1,m−p2 (8)

where RSS1 and RSS2 are the residual sum of squares
in the restricted model and the full model respectively.
Variables p1 and p2 denote the number of parameters
in different models accordingly and m is the number
of observations. With a significance level α, a causal
link could be established if p-value is larger than the F
distribution value.

For multivariate cases, conditional Granger causality
(Geweke, 1984) is applied, where the full model uses all
measured variables and the restricted model excludes the
information of the variable to be detected. A Matlab
toolbox called Granger Causality Connectivity Analysis
(GCCA) is available and is introduced by Seth (2010).
In this work, conditional Granger causality analysis is
performed according to GCCA toolbox.

4. PROPOSED METHODOLOGY

4.1 Feature based causality analysis

In spite of the high-dimensional measurements in indus-
trial processes, they do not act independently and are
highly correlated in contrast (Dong & Qin, 2018). As a
matter of fact, there is a low-dimensional feature space
explaining the most information of observations. In other
words, features could be the real causes of the process
instead of the original variables. Hence, a feature based
causality analysis is proposed in this paper.

Figure 1 illustrates how feature based causality analysis is
performed. A feature learning method is firstly performed
on original variables (x) to extract essential latent vari-
ables (s) in the process. Then given a primary variable
to be analyzed, causality analysis is conducted to identify
the causal features(c). The numbers of original variables,
latent features and causal features are m, A and B respec-
tively and they are sorted in a descending order.

Fig. 1. Feature based causality analysis framework

4.2 Soft sensor design

For a high-dimensional industrial process, it’s difficult to
select appropriate secondary variables to predict primary
variables since more variables mean the cost of complex-
ity while fewer variables mean the loss of information.
Obviously, a set of variables which have causal influence
on primary variables are the most important variables.
Enlightened by this idea, causal feature based soft sensor
is proposed in this paper. Figure 2 shows the framework
of causal feature based soft sensor.

As shown in Fig. 2, a feature learning method is applied
to process data to extract features in the offline learning.
Then given primary variables, feature based causality
analysis is performed to obtain the causal features. Lastly,
a soft sensor is trained to predict the primary variables. In
online monitoring, extraction methods learned in offline
learning stage are applied to process data and causal
features could be extracted according to causal features’
index. Assuming causal features as the inputs of the soft
sensor that have been trained, predicted values of primary
variables can be obtained.

Fig. 2. Causal feature based soft sensor framework

The major characteristic is the introduction of causal fea-
tures in soft sensor. On the one hand, the interpretability
is enhanced since the inputs are causal variables. On the
other hand, over-fitting could be reduced since the com-
plexity is reduced when causal features are considered only.

5. CASE STUDY

In this section, the effectiveness of proposed methodol-
ogy is presented through the Tennessee Eastman process
(TEP), which was simulated to give a realistic industrial
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process. Figure 3 (Chiang & Braatz, 2003) shows the
diagram of the process. Relevant data are available in
http://web.mit.edu/braatzgroup/TE process.zip. It con-
tains data under 22 different conditions, including one
normal condition and other abnormal conditions. There
are 52 different variables in this process, among which 33
variables can be measured in real time while the other
19 variables need to be analyzed respectively. Hence, 33
variables are chosen as the secondary variables and 19
variables are seen as the primary variables to be predicted.
Detailed information is introduced in (Chiang & Braatz,
2003).

Fig. 3. Diagram of TE process

DPCA and DSFA methods are applied in feature extrac-
tion. The time lag d is set to 1 for both DPCA and DSFA.
The number of principal components is set when cumula-
tive percent variance (CPV) (Valle et al., 1999) is beyond
0.85 and the number of slow features is determined by q,
which is set to 0.1. Causality analysis is performed using
Granger Causality Connectivity Analysis toolbox where
history length is set to 3 and the significance level is set to
0.05. Variable based causality analysis is also conducted
for comparison with the feature based causality analysis.

5.1 Results of feature based causality analysis

In this part, we test whether the extracted features could
be better causal factors than the original variables. With-
out loss of generality, all secondary variables are selected to
extract the features, and all primary variables are chosen
to test the performance of feature based causality analysis.

Figure 4 shows different numbers of causal features
and causal variables when the primary variables are
XMEAS(23-41). In most cases, the number of causal fea-
tures is less than 10 while the number of causal variables
is more than 10. It is obvious that inferred causal variables
may be more than real ones for a complex system owing
to the strong correlation and collinearity, which can be
validated in the figure. However, since there is no correla-
tion between each feature, numbers of causal features are
much fewer than causal variables, which is more practical
for causal analysis.

Then, causal influence is calculated according to (7). Fig-
ures 5 and 6 show average and maximum causal influence
of causal features and causal variables respectively. It
is expected high average and maximum causal influence

Fig. 4. Numbers of causal features and variables

should be reached when evaluating a good method. PCA
based causality analysis outstands in most cases, while
SFA based causality analysis can get a good result in some
cases like XMEAS(39), XMEAS(40) and so on. Note that
there are no causal factors of some primary variables in
particular situations as shown in Fig. 4, corresponding
causal influence are not shown in Figs. 5 and 6.

Fig. 5. Average causal influence

Fig. 6. Maximum causal influence

Additionally, some dominant features are expected to
explain the whole process when applying the feature-
extracted methods. Table 1 shows the ratio of top5 fea-
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tures which carry the most variance information in PCA
and change slowest in SFA respectively to causal factors
detected by GCA. For example, the value ‘4/11’ in SFA
about XMEAS(23) means that 11 slow features are de-
tected as causal features while 4 of them are top5 slow
features. Both PCA and SFA show a ratio over 0.4 and it is
concluded that both features have a strong interpretability
in the sense of causality.

Table 1. Ratio of Top5 features to causal
factors

Primary variable SFA PCA

XMEAS(23) 4/11 2/3
XMEAS(24) 2/5 2/4
XMEAS(25) 3/5 1/1
XMEAS(26) 1/6 3/8
XMEAS(27) 3/6 2/6
XMEAS(28) 1/4 0/1
XMEAS(29) 4/9 3/4
XMEAS(30) 2/6 1/5
XMEAS(31) 3/5 1/3
XMEAS(32) 1/3 0/2
XMEAS(33) 4/5 2/3
XMEAS(34) 2/5 1/1
XMEAS(35) 4/11 5/12
XMEAS(36) 3/8 2/7
XMEAS(37) 0/1 0/0
XMEAS(38) 2/3 1/3
XMEAS(39) 0/1 0/0
XMEAS(40) 1/3 2/4
XMEAS(41) 1/5 0/2

Average 40.59% 40.58%

In conclusion, feature based causality analysis can find
more practical causal factors in two aspects: an appro-
priate number of causal factors and appropriate causal in-
fluence, which may lead to a causal feature based analysis
of complex systems in certain situations.

5.2 Results of soft sensors using causal features

In this part, causal feature based soft sensor is de-
signed to show the feasibility. Component C in purge
gas (XMEAS(31)) is chosen as the primary variable and
PCA-based, SFA-based, variable-based soft sensors with
causality analysis (CA) or not are tested.

The first soft sensor is based on least-squares regression
(LSR). Two soft sensors based on recurrent neural net-
works (RNN) (Su et al., 1998) and artificial neural network
(ANN) (Du, 2006) are tested in this paper. The number
of cells and hidden neurons in RNN is set as 10, 20, 15
and 10 respectively, which means there are three RNN
layers and one fully connected layer. There are 5, 10 and
5 hidden neurons in 3 hidden layers respectively in ANN.
The activation function of two soft sensors in each layer is
set as hyperbolic tangent function and Adam optimizer
is used. It should be noted that all paraments of one
certain soft sensor are set in the same way and the only
difference between 6 submodels below is the input data. To
avoid the occasionality in neural networks, one hundred
repetitive testing experiments are conducted to get the
average performance both in RNN and ANN. Correlation
coefficient (r) between the predicted values and real values
plus a root mean square error (RMSE) are calculated to
show the performance.

Table 2 lists the prediction performance of different soft
sensors. It can be vividly seen that although LSR without a
causality analysis can always obtain a better performance
in training data whether it is a feature based regression
or a variable based regression, correlation coefficients of
the regression using causality analysis are larger and root
mean square errors are smaller in test data. What’s more,
PCA based least-squares regression with causality analysis
gets the best result and it corresponds to causal influence
plot in Figs. 5 and 6 where PCA features get a good causal
interpretability, which shows the feasibility of feature
based causality analysis in soft sensor modeling. Similarly,
results in RNN and ANN show soft sensors using causal
factors get better results than soft sensors using untreated
input factors while feature based methods get the best
results in test data and it can also be concluded that causal
feature based soft sensor get the best performance, which
could be further applied into industrial processes.

Table 2. Prediction performance of different
soft sensors

model rtrain RMSEtrain rtest RMSEtest

LSR

PCA+CA 0.6679 0.2827 0.5206 0.2703
PCA 0.7594 0.2472 0.5000 0.2787

SFA+CA 0.7298 0.2597 0.5192 0.2714
SFA 0.7987 0.2286 0.4875 0.2869

Variable+CA 0.7527 0.2501 0.5115 0.2751
Variable 0.7648 0.2448 0.5087 0.2758

RNN

PCA+CA 0.6787 0.2797 0.4920 0.2783
PCA 0.7313 0.2594 0.3832 0.3099

SFA+CA 0.7221 0.2646 0.4645 0.2882
SFA 0.7147 0.2653 0.3264 0.3230

Variable+CA 0.7203 0.2647 0.4634 0.2900
Variable 0.7461 0.2535 0.4400 0.2977

ANN

PCA+CA 0.6486 0.2903 0.4941 0.2761
PCA 0.7550 0.2493 0.4026 0.3135

SFA+CA 0.7027 0.2717 0.4925 0.2803
SFA 0.8052 0.2252 0.3735 0.3274

Variable+CA 0.7015 0.2719 0.4792 0.2858
Variable 0.7668 0.2440 0.4384 0.3039

Table 3 lists the number of input factors used in each soft
sensor. It should be noted that fewer causal factors get the
similar results in training data with better results in test
data, which means a few input factors could represent the
important behavior of the process and is necessary for the
prediction of primary variables. Note that augmented data
are used to extract dynamics, the number of input factors
in SFA is larger than that in the original variables.

Table 3. Number of input factors in different
soft sensors

Soft sensor Number of input factors

PCA+CA 3
PCA 24

SFA+CA 5
SFA 38

Variable+CA 14
Variable 33

To evaluate the importance of causality analysis in soft
sensor, random factors are selected as inputs. It is expected
that prediction performance will decrease sharply since
those inputs makes no sense for quality variables in most
cases while those causal factors play an important role.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

152



Table 4 lists the average performance of 100 times predic-
tion when using random factors. It is vividly shown that
prediction performances get worse in feature based soft
sensors while prediction performances of variable based
soft sensors do not decrease a lot. First, since most factors
do not influence quality variables, random input factors
will give a worse prediction performance than causal input
factors. Second, variable based causality analysis is not so
accurate since original data contain information of noise
and are often correlated while feature based causality anal-
ysis may be more accurate since extracted features get rid
of the noise and are orthogonal. Therefore, some variables
not detected as causal factors may also contain information
about quality variables, leading to the prediction perfor-
mances of variable based soft sensors using random factors
not decrease so sharply. And there are apparent differences
between features so that causal information about quality
variables is limited to a few factors, leading to a much
worse prediction performance without them.

Table 4. Prediction performance of different
soft sensors when using random factors

model rtrain RMSEtrain rtest RMSEtest

LSR
PCA 0.1779 0.3677 0.0794 0.3139
SFA 0.2864 0.3555 0.1509 0.3154

Variable 0.7213 0.2618 0.4853 0.2800

RNN
PCA 0.3128 0.3570 0.0683 0.3276
SFA 0.3310 0.3584 0.0638 0.3358

Variable 0.7146 0.2663 0.4296 0.2972

ANN
PCA 0.2099 0.3630 0.1021 0.3152
SFA 0.2157 0.3706 0.0981 0.3236

Variable 0.7016 0.2710 0.4448 0.2944

6. CONCLUSIONS

Feature based causality analysis is proposed in this paper
to attenuate the influence of noise when using causality
analysis. It outperforms the original variable based causal-
ity analysis in the case study and obtain more efficient
causal factors. Moreover, the causal feature based soft sen-
sor can avoid over-fitting. As the simulation shows, causal
feature based soft sensor obtains the best performance and
causal factors play an important role in predictions.
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